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ABSTRACT
This paper addresses the problem of designing distributed state estimation solutions for a network of
interconnected systems modelled by linear time-varying (LTV) dynamics in a discrete-time framework. The
problem is formulated as a classical optimal estimation problem, for the global system, subject to a given
sparsity constraint on the filter gain, which reflects the distributed nature of the network. Two methods are
presented, both of them able to compute a sequence of well-performing stabilising gains. Moreover, both
methods are validated by resorting to simulations of: (i) a randomly generated synthetic LTV system; and
(ii) a large-scale nonlinear network of interconnected tanks. One of the proposed methods relies on a
computationally efficient solution, thus it is computed very rapidly. The other achieves better performance,
but it is computationally more expensive and requires that a window of the future dynamics of the system
is known. When implemented to a nonlinear network, approximated by an LTV system, the proposed
methods are able to compute well-performing gains that stabilise the estimation error dynamics. Both
algorithms are scalable, being adequate for implementation in large-scale networks.
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1. Introduction

Over the past decades, distributed estimation and control has been a highly researched topic, since it
provides a solution to the estimation and control problems of large-scale networks of interconnected
systems. In fact, it emerges as an alternative to the use of well-known centralised solutions, which
become unfeasible to implement as the dimension of the network increases. The popularity of distributed
solutions is also increasing with the widening of its applications to a broad range of engineering fields.
Examples of such applications are unmanned aircraft formation flight (Bereg et al., 2015; Raffard
et al., 2004; Thien & Kim, 2018; Wolfe et al., 1996), unmanned underwater formations (Curtin
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et al., 1993; Healey, 2001; Viegas et al., 2012; Yuan et al., 2018), satellite constellations (Ivanov
et al., 2019; Russell Carpenter, 2002; Shaw, 1999), automated highway control (Alam et al., 2015;
Bender, 1991; Mu et al., 2016; Yanakiev & Kanellakopoulos, 1996), and irrigation networks (Cantoni
et al., 2007; Gómez et al., 2002; Li, 2014; Prodan et al., 2017).

Although plenty of work has been carried out in distributed control of linear time-invariant systems
(LTI), the problem of designing such controllers, which consists in solving an optimisation problem
subject to a constraint that arises from the distributed nature of the configuration, is extremely difficult, as
discussed by Blondel and Tsitsiklis (2000), and remains an open problem. In fact, the optimal solution for
a linear system with Gaussian noise may be nonlinear, as discussed by Witsenhausen (1968).
Furthermore, it has been shown that the solution of a distributed design control problem is the result of a
convex optimisation problem if and only if quadratic invariance of the controller set is ensured (Lessard
& Lall, 2010, 2015). For those reasons, the overwhelming majority of the approaches found in the
literature attempt to find the optimal linear solution, which is also a difficult nonconvex optimisation
problem that remains unsolved. On top of that, given the difficulty in finding the optimal linear solution,
the most common approach found in the literature is to approximate the nonconvex optimisation problem
by a convex one, which allows to obtain an approximate solution to the original problem. This is the
approach followed in this paper. However, this paper and most of the research that follows this approach
do not have stability or boundedness guarantees for the closed-loop system. Having said that, the research
on distributed estimation of linear time-varying (LTV) systems, which is naturally more challenging, has
been undergone to a much lesser extent. For instance, one of the few papers in this matter is Heydari
and Demetriou (2016), for a consensus-based protocol, in which an adaptive strategy is developed for a
network of agents that collaboratively estimate the state of an LTV system. In this context, this paper
addresses the problem of designing a distributed state estimation solution for a network of systems
modelled by LTV dynamics, in a discrete-time framework. A general scheme for the design of distributed
filters is followed in this paper, in which the problem is formulated as a classical optimal estimation
problem, for the global system, with a given sparsity constraint on the filter gain. Such sparsity
constraints impose certain entries of the global gain matrix to be null, following a structure that reflects
the distributed nature of the network, necessary for the implementation of the distributed state estimator.
It is also assumed that limited communication between agents is possible.

This paper introduces two methods for the computation of distributed filter gains for an arbitrary
network of interconnected LTV systems with an arbitrary time-invariant network configuration. The
configuration of the network is shaped by the available directed communication links between agents,
which allow for sharing information. In this paper, it is shown that it can be portrayed by a sparsity
constraint on the filter gains, as put forward in Section 2. Both methods consist of the generalisation of
those introduced in Viegas et al. (2018) for the particular problem of decentralised relative navigation for
LTI systems. In this paper, the generic decentralised estimation problem for networks of interconnected
systems with dynamic couplings, as well as output measurement couplings, is addressed with emphasis
on the limited data transmissions between agents. Albeit straightforward, this generalisation requires
attention to some details on its implementation, given that one seeks a sequence of stabilising filter gains
instead of a single steady-state gain. It is also important to consider the computational complexity of the
proposed methods, since the computations have to be carried out online. This generalisation not only
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allows for a significant widening of the application of both methods, even to nonlinear systems, but it is
also presented in a generic framework, allowing for its application to a broad range of fields. The
classical infinite-horizon optimisation problem subject to a sparsity constraint is nonconvex. Hence, the
methods that are proposed herein rely on conveniently defined convex relaxations of the original
optimisation problem to achieve a computationally efficient approximation to its solution. The first
method proposed, denoted as the one-step method in the sequel, follows a similar approach as the
classical Kalman filter, minimising at each time step the trace of the covariance of the estimation error.
This method is computationally very efficient, exhibits a closed-form solution, and it does not require any
particular initialisation. However, its solution is sub-optimal. The second method, denoted as the finite-
horizon algorithm in the sequel, is used to compute an approximation to the finite-horizon problem
instead, which is then extended to this original infinite-horizon formulation. Albeit iterative, each
iteration of this algorithm can be computed in closed-form and, although it requires a sequence of gains
for its initialisation, they do not need to be stabilising or even to follow the sparsity constraint. Finally,
both methods are validated resorting to numerical simulations. In addition to a randomly generated
synthetic system, a large-scale nonlinear network of tanks is also considered. A MATLAB
implementation of the decentralised algorithms put forward in this paper can be found in the DECENTER
toolbox available at https://decenter2021.github.io (accessed on 10 July 2021).

This paper is organised as follows. In Section 2, the estimation problem is formulated and the
assumptions that are considered are introduced. In Sections 3 and 4, the one-step and finite-horizon
methods are presented, respectively. Section 5 details the implementation of both methods to a synthetic
LTV system, comparing their performance and illustrating some details of their application. In Section 6,
both methods are applied to a large-scale nonlinear network of interconnected tanks. Finally, Section 7
presents the main conclusions of this paper.

1.1. Notation

Throughout this paper, the identity, null, and ones matrices, all of proper dimensions, are denoted by , ,
and , respectively. Alternatively,  is also used to represent the  identity matrix. The entry 
of a matrix  is denoted by . The ith component of a vector  is denoted by , and 

 denotes the  square diagonal matrix, whose diagonal is . Similarly, 
 denotes the square block diagonal matrix whose diagonal blocks are given by

matrices . The vectorisation of a matrix , denoted herein by , returns a vector
composed of the concatenated columns of . Given a symmetric matrix ,  and  are
used to point out that  is positive definite and positive semidefinite, respectively. The Kronecker
product of two matrices  and  is denoted by .

2. Problem statement

2.1. Network dynamics model

Consider a network of N interconnected systems, , with . The topology of the network,
which is assumed to be time-invariant, is defined by the dynamic and output measurement couplings
between systems. Such coupling topologies may be represented by directed graphs, or digraphs, 

https://decenter2021.github.io/
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, composed of a set  of vertices and a set  of directed edges. An edge e incident on
vertices i and j, directed from j towards i, is denoted by . For a vertex i, its in-degree, , is
the number of edges directed towards it, and its in-neighbourhood, , is the set of indices of the
vertices from which such edges originate. Conversely, for a vertex i, its out-degree, , is the number of
edges directed from it, and its out-neighbourhood, , is the set of indices of the vertices towards which
such edges are directed. For a more detailed overview of the elements of graph theory used to model this
network, see West (1996) and Wallis (2010). In this framework, each system is represented by a vertex,
i.e. system  is represented by node i, and the dynamics couplings and output measurement couplings
are represented by the directed graphs  and , respectively. In this configuration, if the dynamics of 

 depend on the dynamics of system , then this coupling is represented by an edge directed from
vertex j towards vertex i, i.e. edge  in the directed graph . Conversely, if the output of 
depends on the dynamics of system , then this coupling is represented by an edge directed from vertex
j towards vertex i, i.e. edge  in the directed graph . It is important to stress that the
direction of the edge matters. Note, for instance, that the fact that the dynamics of  depend on the
dynamics of system  does not, necessarily, imply the converse.

The dynamics of system  are modelled by the following discrete-time LTV system:

(1)

where  is the state vector,  is the input vector, which is assumed to be
known, and  is the output vector, all of system ; matrices , 

, and  are known time-varying matrices that model the
dynamics of system  and its couplings with the other systems in its in-neighbourhood; vectors 

 and  are the observation and process noise, respectively, whose

models are defined in the sequel.
The global dynamics of the network are, then, modelled by a generic LTV system of the form

(2)

where  is the global state vector, 
 is the global input vector, and 

 is the global output vector; 

 is the observation noise, modelled as a zero-mean

white Gaussian process with associated covariance matrix given by the block matrix
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where  models the correlation between  and ; 

 is the process noise, modelled as a zero-mean white

Gaussian process with associated covariance matrix given by the block matrix

where  models the correlation between  and ; 

, , and  are block matrices given by

and
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Note that some of the block entries of matrices , , and  may be null
due of the nonexistence of couplings between every pair of systems. In fact, if (i)  with 

, then  and ; and (ii)  with , then 
 and . The pair  is assumed to be uniformly completely

observable.
Before proceeding with the statement of the estimation problem, it is worth pointing out that virtually

all large-scale networks have sparse dynamics. In particular, matrices  and 
 are generally sparse. In the limit scenario of (i) fully decoupled dynamics, , , and 
 are block diagonal; and (ii) fully decoupled outputs,  and  are block diagonal. Most of

the time, a large-scale network is fully decoupled either regarding the dynamics or the outputs of the
systems. For that reason, various works focus on only one of these couplings. Viegas et al. (2018), for
instance, focus only on networks with output coupling between systems, to solve the decentralised
relative navigation problem. In this paper, the network is treated generically, at no point making any
assumptions on the sparsity of matrices  or .

2.2. Filter design

The goal is to design a distributed filter for a network of N interconnected systems, whose global
dynamics are described by the LTV system (2), under limited communication between systems in a
distributed configuration. In this paper, state estimation is assumed to be achieved by a dynamical filter
based on prediction-update steps employed in a Kalman filter. The prediction step is, thus, given by

(3)

where  denotes the predicted state estimate of system  at instant k + 1 and  the
updated state estimate of system  at instant k. The global prediction step can be written as

(4)

where  denotes the global predicted state
estimate at instant k + 1 and  the global updated state
estimate at instant k. Note that, to perform the prediction step according to (3), each system  ought to
receive, through communication, the updated state estimates  with . Thus, the
directed communication links required to perform the update step are represented by the directed graph 
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In a centralised configuration, each system has access to the global output measurement, at the
expense of all-to-all communication via a central system. In a decentralised configuration, that is not the
case. Each system  has only access to a subset of the measurement outputs, which is defined by
another directed graph . It is important to remark that, unlike directed graphs  and , which are
defined by the physical system under study,  can be freely selected during the filter design stage. In
this framework, each system is represented by a vertex, i.e. system  is represented by node i, and if
system  has access to the output measured by system , then this link is represented by an edge
directed from vertex j towards vertex i, i.e. edge  in the directed graph . The update step is,
thus, given by

(5)

where  denotes the predicted output of system  at time instant k, which is given by

(6)

and , , , are the distributed filter gains. It is also important to remark
that, to perform: (i) the update step according to (5), each system  ought to receive, through
communication, the output  and predicted output  with ; and (ii) the computation
of the predicted output according to (6), each system  ought to receive, through communication, the
predicted state estimates  with . Thus, the directed communication links
required to perform the update step are represented by the union of the directed links of the directed
graphs  and .

The global update step can be written as

(7)

where  is the global filter gain, which must follow a sparsity pattern imposed by .
Let  denote a sparsity pattern of the form

where  with

(8)
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The set of matrices that obey the sparsity constraint determined by  is defined as

Note that the global update step (7) is equivalent to the concatenation of the local update steps (5) if
and only if . An example of a sparsity pattern is given in Section 6 for a network of
interconnected tanks. It is worth remarking that, if there is all-to-all communication, then , which
corresponds to a centralised configuration. It is also important to stress that, although the choice of the
output communication links between systems can take advantage of the known dynamic dependencies
between systems, which makes use of the communication links that are already in place and yields better
performance, a generic and predefined sparsity pattern is considered.

Defining  and  as the global covariance of the
estimation error at instant k after the prediction and update steps, respectively, one can write

(9)

and

(10)

for the global system. Note that designing a distributed filter for a network of interconnected systems,
whose local dynamics are described by the LTV system (1), is equivalent to designing a global filter (4)
and (7), whose gain must follow a sparsity pattern.

With the definition of a sparsity pattern, it is now possible to formulate the problem of designing a
distributed filter for the global LTV system (2). One aims to optimally compute a sequence of filter gains
that follow the sparsity pattern required by the structure of the network of systems, which is assumed to
be time-invariant. For an infinite-horizon and a known and time-invariant sparsity pattern , solve the
optimisation problem

(11)

It is assumed, throughout the paper, that the distributed state observer is stabilisable. The assumption
on the uniform observability of the pair  is only a necessary condition for the existence of
a stabilising sequence of sparse gains.
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Because of the sparsity constraint, the optimisation problem (11) is nonconvex and its optimal
solution is still an open problem. To overcome this difficulty, the optimisation problem may be relaxed so
that it becomes convex, allowing for the use of well-known optimisation techniques. Albeit optimal for
the modified problem, the relaxed solution is only an approximation to the solution of the original
problem. For this reason, careful relaxation is necessary to ensure that the separation between both
solutions is minimal. This approach is designated convex relaxation and will be used to derive the
methods put forward in this paper.

Each of the following two sections presents a method for computing approximate solutions to the
optimisation problem (11). The proposed methods are the time-varying counterparts of the one-step and
finite-horizon methods presented in Viegas et al. (2018) for the relative navigation problem of LTI
systems.

2.3. Communication requirements

As discussed in the previous subsection, there are various communication requirements associated with
each step of the distributed filter. To sum up, each system  has to receive through communication from 

: (i) the updated state estimates  with ; (ii) the predicted state estimates 
 with ; and (iii) the output  and predicted output  with .

Thus, the required directed links correspond to the union of the directed edges that make up the directed
graphs , , and . Note that each system  is required to communicate with other systems, with
which it is coupled either dynamically or through the output measurement. For that reason, generally
speaking, it is feasible to establish these links in practice. While we maintain full generality for the
structure of different networks, in a typical application either  or , and 

 is chosen according to the physical structure of the system.
Another very important aspect to take into account is the synchronisation of the data transmissions.

On one hand, the updated state estimates  with , the predicted state
estimates  with , and the predicted output  with  can be
transmitted to system  at any time since time-instant k−1 until time instant k. For that reason no
complex synchronisation protocols are required. On the other hand, the transmission of the output 
with  is required at time instant k in system , but it is only available at time instant k in
system . For this reason, very complex synchronisation algorithms are required to handle these
transmission without causing prohibitively large delays. Furthermore, for large-scale networks, this
synchronisation becomes unfeasible to implement in practice, so it is usual to adopt a fully distributed
configuration instead, i.e. setting  and  in the filter design stage. In such
configuration, according to the definition of the sparsity pattern (8), the gain of the global system must
follow a block diagonal structure.

Often, for dynamically coupled networks of interconnected systems, the initial model of the network
is continuous-time. After discretisation, which is required to implement estimation and control techniques
in a digital computer, the number of dynamical couplings between agents increases. An example of such
a phenomenon is presented in Section 6 for a network of interconnected tanks. The additional dynamical
couplings, that arise with the discretisation of the continuous-time dynamics of the network, are generally
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very weak. For that reason, in applications where the cost of establishing communication links is high, it
is usually a good practice to consider only the dominant couplings in  and find a compromise
between the accuracy of the prediction step and the communication burden.

3. One-step method for computation of filter gains

For the derivation of the one-step method, an approach similar to the one used for the unconstrained
Kalman filter is used. In fact, the gain in each instant is computed so that the trace of the covariance of
the estimation error for that same instant is minimised. The optimisation problem (11) is, thus, modified
to

(12)

for , given the predicted estimation error covariance, , at each time step.
Substituting (10) in the objective function of the relaxed optimisation problem (12) yields a quadratic
function in relation to . Given that the sparsity constraint is convex, the relaxed optimisation
problem (12) is convex, allowing for the use of techniques similar to those used to solve the
unconstrained problem. However, using this formulation, the computation of each gain does not take into
account its influence on the estimation error covariance of future time steps, yielding a sub-optimal
solution to the original problem. In spite of that, its solution can be obtained in closed-form.

Theorem 3.1 Let  denote a column vector whose entries are all set to zero except for the ith one, which
is set to 1, and define . Define a vector  to encode the nonzero entries in the
ith row of  following

and let . Then, the optimal one step gain that solves (12) is given by

(13)

which can be solved efficiently (see Remark 3.2), where  is the innovation covariance at step k,
given by

(14)

Proof. See Appendix 1.

Remark 3.1 Note that, using the result above, the sequence of gains that solves the optimisation
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4. Finite-horizon method for the computation of filter gains

The finite-horizon method, presented in this section, seeks to find an approximation to the solution of the
infinite-horizon problem (11) considering, in a first instance, the equivalent finite-horizon problem, i.e. to
compute a sequence of filter gains that minimise the sum of the trace of the covariance of the estimation
error over a given finite window . The optimisation problem is, thus, given by

(15)

However, similarly to the infinite-horizon problem, this problem is nonconvex. Therefore, to make use of
well-known optimisation techniques, convex relaxation is employed. In fact, instead of minimising the
sequence of gains as a whole, one may iteratively minimise each gain of the sequence individually, while
taking into account its effect on the whole finite window. The solution of the original finite-horizon
optimisation problem (15) can, thus, be approximated by the solutions of the relaxed optimisation
problem

(16)

for . Expanding the objective function of the optimisation problem above, one readily
concludes, after some algebraic manipulation using (9) and (10), that, for each k, it is quadratic in relation
to . Given that the sparsity constraint is also convex, not only is the relaxed optimisation
problem (16) convex for each k, but it also has a closed-form solution, as detailed in the following result.

problem (12) can be computed forward in time. This computation takes turns propagating the predicted
error covariance using (10) and (9), in this order, and computing the optimal gain making use of (13).
For this reason, this method is said to be causal, in the sense that, for each instant, the gain computation
does not require the future dynamics of the system to be known a priori. Allied with the fact that it is
computationally efficient, this method allows for the online computation of the gain for each time step.

Remark 3.2 The closed-form solution (13) has a computational complexity of . Instead of using
it, the exact numeric algorithm proposed in Pedroso and Batista (2021) can be, alternatively, applied

to (A1) to compute each gain with a computational complexity of , where  denotes the
number of nonzero entries of . Usually, in distributed control applications,  is given by ,
where  is a constant. It, thus, follows that a computational complexity of  is achieved,
which is equal to the complexity of the centralised solutions. An efficient MATLAB implementation of this
method can be found in the DECENTER toolbox available at https://decenter2021.github.io (accessed on
10 July 2021).

https://decenter2021.github.io/
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For an example on how to compute matrix  for a given sparsity pattern, see Viegas et al. (2018,
Section 5). Each time a gain is modified, the sequence of error covariance matrices needs to be updated,
which can be computationally expensive. Nevertheless, analysing the closed-form solution for the
computation of , given by (17), one readily notices it only makes use of the error covariance of
instants up to k. For this reason, the gains can be computed in reverse order, i.e. from the last time step of
the window to the first, updating the covariances when all the gains of the window have already been
computed. Repeating this process, that is, taking turns computing the sequence of gains backwards in
time and recomputing the covariance matrices forward in time, the sequence of gains converges to a near-
optimal solution of the finite-horizon optimisation problem (15). This process is referred to, herein, as an
outer loop iteration. This algorithm is presented in Table 1.

Theorem 4.1 Define a matrix  such that the vector  contains the nonzero entries of 
 according to the desired sparsity pattern. The closed-form solution of (16) is given by

(17)

which can be computed efficiently (see Remark 4.3), where  is given by (14) and

with

(18)

for  and  for .

Proof. See Appendix 2.

Table 1. Algorithm for the computation of the sequence of gains using the finite-horizon method. (Table view)

1. Initialisation: Select a window size, W, an initial
covariance , and compute a set of
initial filter gains , , using, e.g.
the one-step method. See Remark 4.1 for more details
on the initialisation. Compute the resulting covariances 

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/t0001.xhtml
https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/t0001.xhtml
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, .
Select a stopping criterion, e.g. a minimum
improvement on the objective function of the finite-
horizon optimisation problem (15) or a fixed number of
iterations.

2. While: stopping criterion is not met
a. For: 

i. Recompute  using (17).
b. Recompute the covariances , 

, for the new filter gains, using (9)
and (10).

3. Return: the sequence of gains , for 
.

Remark 4.1 As pointed out in Table 1, the finite-horizon algorithm requires a sequence of gains and
error covariance matrices for its initialisation. This issue is addressed similarly to the LTI counterpart of
the finite-horizon algorithm. For more details, see Viegas et al. (2018, Remark 2).

Remark 4.2 Note that the finite-horizon algorithm, unlike the one-step method, is not causal, in a sense
that, for each instant, the gain computation requires a window of the future dynamics of the system to be
known. For this reason, the application of this algorithm is possible either if one has a model of the
evolution of the system with time or if it is used in combination with an online system identification
algorithm.

Remark 4.3 The closed-form solution (17) has a computational complexity of , where 
denotes the number of nonzero entries of . Instead of using it, the exact numeric algorithm proposed in
Pedroso and Batista (2021) can be, alternatively, applied to (A3) to compute each iteration with a

computational complexity of . Usually, in distributed control applications,  is given by 
, where  is a constant. It, thus, follows that a computational complexity of  is

achieved for each iteration, which is equal to the one of the centralised solution. An efficient MATLAB
implementation of this method can be found in the DECENTER toolbox available at
https://decenter2021.github.io (accessed on 10 July 2021).

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/t0001.xhtml
https://decenter2021.github.io/
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It is evident that it is unfeasible to make  to approximate the solution of the infinite-horizon
problem (11) due to the increasing computational load as W becomes large. Instead, one considers a finite
window, W, that is large enough so that the gains computed within that window converge to those that are
obtained if an arbitrarily large window is used. The appropriate length for this finite window varies
depending on the system dynamics. The gains may, then, be computed for the appropriate window and
used until the end is reached, instant when a new window is defined and new gains are computed using as
initial covariance, , the covariance at the end of the previous window, .

However, an important characteristic of the finite-horizon algorithm is that it is greedy. In fact, given
that the estimation error covariance in the time instants after the window is not taken into account in the
cost function of the finite-horizon algorithm, it is possible to select gains that allow for a sudden decrease
of the trace of the error covariance at the end of the window. This effect can be noticed in Section 5,
when this procedure is applied to a synthetic system. At first sight, this may seem an advantageous
characteristic, however, the use of the gains near the end of the window, responsible for the sudden
decrease of the trace, deteriorates the performance after the transition to the next window, resulting in a
sudden spike of the trace. Although, in this example, the sudden decrease may seem small and negligible
at first sight, its impact is significant and it is important to take it into account, as it is exemplified in
Section 5. Assume the sudden decrease of the trace occurs d time steps before the end of the window.
Instead of using the gains computed for each window until its end, one should only use them until the
instant W−d. At this instant, a new window is defined using as initial covariance, , the covariance
of the previous window before the sudden decrease, . Following this approach,
it is possible to approximate the evolution that would be obtained setting , with a manageable
computational load and requiring the dynamics of the system to be known only until W time steps ahead,
when computing the sequence of gains to be used for each window. This will be exemplified in
Sections 5 and 6.

5. Simulation results for a synthetic system

In this section, the implementation of the one-step method and of the finite-horizon algorithm to a
synthetic system is simulated. The matrices of the synthetic system, whose constant parts were randomly
generated, rounded to 3 decimal places, are given by
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The finite-horizon was applied to approximate an infinite-horizon window, as discussed in Section 4,
with W = 45, d = 15, and performing 32 outer loop iterations. Figure 1 depicts the evolution of the trace of
the covariance of the estimation error for 20000 Monte Carlo simulations. The vertical dashed lines in
this plot indicate the transitions between finite windows used in the finite-horizon algorithm. First, from
Figure 1, one can conclude that the finite-horizon method applied to approximate the infinite-horizon
consistently outperforms the one-step method. Moreover, the transition between windows of the finite-
horizon appears to be smooth, not having been affected by the sudden decrease in error covariance at the
end of each finite window. Figure 2 depicts the projected evolution of the trace of the covariance of the
estimation error if one were to use d = 0. Analysing this plot, one can readily point out a sudden increase
at the beginning of each new window, resulting in a significantly poorer estimation performance
compared to the implementation described in Section 4 and depicted in Figure 1. This practical example
clearly demonstrates the advantage of using overlapping windows in the finite-horizon algorithm.

Figure 1. Evolution of the trace of the covariance of the estimation error for 20,000 Monte Carlo simulations.

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0001.xhtml
https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0001.xhtml
https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0002.xhtml
https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0001.xhtml
https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0001.xhtml
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6. Simulation results for a network of N tanks

In this section, both methods put forward in this paper are applied to a large-scale network of N tanks, as
a means of assessing their performance. Given that the dynamics of the projected network are nonlinear,
to employ the methods devised one can approximate its behaviour by an LTV system, linearising and
discretising its dynamics about successive equilibrium points. For this reason, it allows to assess the
performance of the proposed distributed estimation methods when implemented in nonlinear time-
varying systems. The quadruple-tank network introduced in Johansson (2000) inspired the example
shown herein.

6.1. N tanks network dynamics

Consider N interconnected tanks, as shown in Figure 3, where N is an even integer. The water level of
tank i is denoted by . The network is actuated by N/2 pumps, which are controlled by the lower tanks,
whose inputs are denoted by  for , in accordance with the schematic. Each pump is
connected to a three-way valve that regulates the fraction of the flow, held constant, that goes to each of
the tanks supplied by the pump. Each tank has a sensor, which measures its water level, with output 
for tank i. Making use of mass balances and Bernoulli's law, the system dynamics, in the absence of
noise, are given by

Figure 2. Projected evolution of the trace of the covariance of the estimation error with d = 0 in the
implementation of the finite-horizon algorithm.

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0003.xhtml
https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0002.xhtml
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(19)

where  and  are the cross sections of tank i and of its outlet hole, respectively; the constant 
represents the fraction of the flow that passes through the valve i to the lower tanks;  is the constant of
proportionality between the mass flow and the input of pump i; g denotes the acceleration of gravity; and 

 is the constant of proportionality between the water level and the output of each sensor.

The nonlinear dynamics are linearised about a given equilibrium point, characterised by equilibrium
water levels, , ; inputs , ; and outputs , . Writing
the state, control, and output vectors, respectively, as

Figure 3. Schematic of the N tanks network.

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0003.xhtml
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the continuous-time linearised system is given by

(20)

with , , and  given by

and

where  is the time constant of tank i, given by

Vectors  and  are the process and observation noise, modelled as zero-
mean uncorrelated white Gaussian processes, with associated covariance matrices 

 and , respectively.
Provided that this system is slow, one can assume that the water level measurements and control

inputs are updated with a constant period T. Under this assumption, the discretisation of (20) yields
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where  and  are also zero-mean uncorrelated white Gaussian processes with associated
covariance matrices  and , and , , , 

, , and  are the result of the discretisation using

It is important to remark that to perform the linearisation, each local filter ought to access the
estimates of the variables of the network that define the equilibrium point, through communication.
Provided that the water levels change slowly, it may be carried out with a given periodicity, ,
thereby reducing the computational load and communication needs.

6.2. Filter implementation

The problem considered for this network is the design of a distributed state estimation solution in which
each tank has (i) only access to the measurement of its water level, i.e. a fully distributed configuration is
considered; and (ii) may receive state estimates of other tanks through communication, to perform the
prediction step of each local filter. The approach followed consists of the implementation of a local filter
in each of the tanks, which estimates exclusively its own water level, relying on a communication link
with some of the other tanks. The directed communication links that are implemented between tanks are
carefully chosen to allow for an accurate prediction step of the local filters, requiring only estimates of
the other tanks already available at the previous time-step. On the other hand, the update step is
undergone in a fully distributed framework, not requiring the transmission of sensor outputs between
tanks. Unlike previous state estimates, sensor outputs of each tank are only available at the same instant
the communication is performed, thus their transmission is harder to implement using slow
communication links without introducing a delay. Thus, the low coupling between agents in this
particular example is exploited. For more details, see Section 2.3.

In continuous-time, the analysis of matrices  and  suggests that each lower tank i is only
dynamically coupled to the tank above, tank , through . However, when this network is
analysed in discrete-time, the tank whose pump supplies water to tank , alters, during each
discretisation interval, the rate at which water flows from tank  to tank i. For that reason, after
the discretisation of matrix , one notices that each lower tank i is also dynamically coupled to the
control input of the lower tank, whose pump supplies the tank , through . Thus, in
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discrete-time, the predicted state estimate for the lower tanks is, for , given by

and, for tank 1, by

Note that  and  are distinct, the former is the input to pump i and the latter is the ith
component of , which is the input relative to the equilibrium point. The updated estimate follows:

where  is the filter gain. Again,  and  are distinct, the former is the output of
the water level sensor in tank i and the latter is the ith component of . The equations above reflect
the communication needs for the lower tanks. Each lower tank i has to receive an estimate of the water
level in the tank above it, and also the control input given by the tank whose pump supplies water to the
tank above tank i.

Either in continuous-time or discrete-time, each upper tank i is only dynamically coupled to the
control input of the tank whose pump supplies tank i, through . Thus, the predicted state estimate
for an upper tank i is, in discrete-time, given by

for , and by

for . The updated estimate follows:

(22)
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where  is the filter gain. Analysing (22), each upper tank i has to receive, through
communication, the input computed by the tank whose pump supplies tank i. A schematic of the
communication links necessary for the proposed distributed solution is depicted in Figure 4, which shows
that only 3N/2 directed communication links are used out of a possible  links. As an example,
for the network of N = 40 tanks, simulated in Section 6.3, less than  of the possible directed
communication links are used. It is important to remark that, in this particular example, given that the
couplings between agents are weak, it is possible to implement few communication links without
compromising estimation performance significantly. However, in networks with stronger couplings, there
is a greater degradation of performance when compared with a centralised solution, which is the price to
pay for easier or feasible implementation.

Grouping the local filters, it is possible to write the dynamics of the global filter, whose gain is subject
to a sparsity constraint. The predicted estimate of the global filter is given by

and the updated state estimate by

where  is the global filter gain. Comparing the global and local filter dynamics, it follows
that , which is equivalent to setting a sparsity constraint on the
global gain corresponding to the sparsity pattern . It is interesting to remark that the sparsity
constraint allows only for 1/N of the total entries of the gain to be nonnull, which alongside the imposed

Figure 4. Schematic of the communication links for the N tanks network.

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0004.xhtml
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diagonal structure results in a very simple update step. One may reckon, at first sight, that such a severe
constraint would result in a significant loss of performance when compared with the unconstrained
solution. However, as the simulation results of Section 6.3 show, due to the weak couplings between
agents, the performance loss is actually small.

6.3. Simulation results

The network was simulated for N = 40 tanks and the values of its physical constants are presented in
Table 2. The process noise covariance matrix was randomly generated taking into consideration the
dynamical dependencies between the tanks, and the observation noise covariance matrix was set to 

, in accordance with the noise of the measurements of the water levels. The sampling time was
set to  and the linearisation period to . Analysing the system dynamics, given
by (19), one notices that an equilibrium point corresponds to the solution of a system of N equations with
3N/2 unknowns. It is, thus, necessary to select N/2 of these variables to define an equilibrium point,
which, for this simulation, were chosen to be the estimates of the water levels of the lower tanks, 

. For this reason, each time a new linearisation is performed every local filter has to receive

through communication the water level in the lower tanks, compute the remaining variables that define
the equilibrium point, and linearise the relevant entries of matrix  about that point. The initial level of
the tanks is set to  for  and the initial covariance matrix to 

. Considering that the only goal is to assess the estimation performance, an open-loop
control law is chosen, as given by

Table 2. Values of the physical constants of the N tanks network. (Table view)

Constant Value
, i odd
, i even

, i odd 
, i even 
, 

g

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/t0002.xhtml
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The finite-horizon algorithm was initialised with the gains computed using the one-step method.
Moreover, 5 outer loop iterations were used, which proves to be enough for the convergence of the finite-
horizon solution within  of the limit solution. Given that the finite-horizon method requires the
dynamics of the system in a time window that spans future instants, and considering that the dynamics of
the network vary with its state vector, it is not possible to simulate this method online without the use of a
mechanism that predicts the future evolution of the state vector, thus allowing to obtain the linearised
dynamics. To allow for the comparison of both methods put forward in this paper, at the beginning of
each window, the finite-horizon method receives, through communication, the estimated water-level in all
the tanks, which allows for the computation of all outer loop iterations without requiring additional
communication. Given that the actuation is known, it simulates the linear evolution of the network until
the end of the window, linearising the system with the same periodicity .

Figure 5 depicts the evolution of the difference between the trace of the estimation error covariance of
the finite-horizon algorithm for a window W = 40 and . It reveals that the sudden decrease due
to the greediness of the method, when compared with the trace of the covariance of the estimation error,
is not significant. In fact, the use of a window W = 40, of which none of the gains computed near the end
of the window is ignored, i.e. setting d = 0, allows for a sudden decrease that is roughly 6 orders of
magnitude below the magnitude of the trace of the covariance of the estimation error, which proves to be
adequate for the application of the finite-horizon algorithm to approximate the solution of the infinite-
horizon problem, as detailed in Section 4.

, i odd 0.7
, i even 0.6

https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0005.xhtml
https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/f0005.xhtml


31/12/2021, 15:15Discrete-time distributed Kalman filter design for networks of interconnected systems with linear time-varying dynamics

Page 25 of 29https://www.tandfonline.com/reader/content/17df98478d9/10.1080/00207721.2021.2002461/format/epub/EPUB/xhtml/index.xhtml

Figure 6 depicts the nonlinear simulation of the water level in tanks 13 and 31, as well as the
estimates for the centralized solution, one-step method, and finite-horizon algorithm. It is clear that none
of the solutions diverge and all provide estimates that are close to the true water level in the tank.
Figure 7 depicts the evolution of the trace of the covariance of the estimation error, obtained with 5000
Monte Carlo simulations. Analysing this plot, one can readily note that there are no significant
differences between the one-step and finite-horizon solutions. Moreover, both achieve a performance
close to the centralised solution.

7. Conclusion

Very little work has been carried out regarding the design of distributed state estimation solutions for
networks of interconnected systems modelled by LTV dynamics. In this paper, two methods for the
computation of distributed filter gains for an arbitrary LTV network with arbitrary time-invariant network
configurations, portrayed by the sparsity constraint that is imposed, were proposed, as a generalisation of
previously obtained results for LTI systems. This generalisation allows for a significant widening of the
application of both these methods, even to nonlinear systems. First, it was shown that both methods put

Figure 5. Evolution of difference between the trace of the covariance of the estimation error of the finite-
horizon algorithm for a window  and W = 300, for the N = 40 tanks network.

Figure 6. Evolution of the water level and of the estimates of the different filters, for the N = 40 tanks network.
(a) Tank 13 and (b) Tank 31.

Figure 7. Evolution of the trace of the covariance of the estimation error, obtained with 5000 Monte Carlo
simulations.
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forward in this paper are able to compute a sequence of well-performing stabilising gains subject to an
arbitrary sparsity constraint. Second, the one-step method can be computed very efficiently and does not
require that the future dynamics of the system are known. Third, the finite-horizon algorithm achieves
better performance but it is computationally more expensive and requires that a window of the future
dynamics of the system is known. Fourth, both algorithms put forward in this paper were applied to a
nonlinear network, whose dynamics were approximated by an LTV network corresponding to successive
linearisations about the operations points. It was possible to conclude that, even though the original
system is nonlinear, the proposed methods are able to compute well-performing gains that stabilise the
estimation error dynamics. Fifth, for networks with weak couplings between agents, the one-step and
finite-horizon solutions offer similar performance, even though a very sparse and simple filter
configuration was implemented. Sixth, it was possible to show the scalability of both methods, having
been implemented to a large-scale system. Finally, note that, when applied to a nonlinear network, the
proposed methods require the establishment of additional communication links to perform the
linearisation of the system, compared to the application to an LTV network. Further work on this topic
should address this drawback.
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Appendix 1. Derivation of the closed-form optimal gain for the one-step method
The optimal gain for the one-step method is obtained by solving the optimisation problem

The estimation error covariance for the instant k is given by (10). Taking the derivative of its trace with respect to 
yields

(A1)

where  is as defined in (14). For each k, (A1) is identical to its time-invariant counterpart, therefore the same
techniques, found in Viegas et al. (2018), may be employed to solve . The solution of this
optimisation problem is, thus, given by (13).

Appendix 2. Derivation of the closed-form optimal gain for the finite-horizon algorithm
One starts by noticing that the optimisation problem (16) is equivalent to

since  does not depend on , for i<k. Without loss of generality, assume  is invertible. Using (9) and (10),
for , the estimation error covariance can be written as
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where  is defined as in (18). Taking the derivative of the trace of  with respect to  yields

(A2)

For each k, (A2) is identical to its time-invariant counterpart, therefore the same techniques, found in Viegas
et al. (2018), may be employed to solve

(A3)

The solution of this optimisation problem is, thus, given, in closed-form, by (17), which can be computed efficiently.


